Inositol phosphate formation and its relationship to calcium signaling.
نویسندگان
چکیده
The activation of a variety of cell surface receptors results in a biphasic increase in the cytoplasmic Ca2+ concentration due to the release or mobilization of Ca2+ from intracellular stores and to the entry of Ca2+ from the extracellular space. It is well established that phosphatidylinositol 4,5-bisphosphate hydrolysis is responsible for the changes in Ca2+ homeostasis. Stimulation of Ca2(+)-mobilizing receptors also results in the phospholipase C-catalyzed hydrolysis of the minor plasma membrane phospholipid, phosphatidylinositol 4,5-bisphosphate, with the concomitant formation of inositol (1,4,5) trisphosphate [1,4,5)IP3) and diacylglycerol. Analogous to the adenylyl cyclase signaling system, receptor-mediated stimulation of phospholipase C also appears to be mediated by one or more intermediary guanine nucleotide-dependent regulatory proteins. There is strong evidence that (1,4,5)IP3 stimulates Ca2+ release from intracellular stores. The Ca2(+)-releasing actions of (1,4,5)IP3 are terminated by its metabolism through two distinct pathways. (1,4,5)IP3 is dephosphorylated by a 5-phosphatase to inositol (1,4) bisphosphate; alternatively, (1,4,5)IP3 can be phosphorylated to inositol (1,3,4,5) tetrakisphosphate by a 3-kinase. Whereas the mechanism of Ca2+ mobilization is understood, the precise mechanisms involved in Ca2+ entry are not known. A recent proposal that (1,4,5)IP3 secondarily elicits Ca2+ entry by emptying an intracellular Ca2+ pool will be considered. This review summarizes our current understanding of the mechanisms by which inositol phosphates regulate cytoplasmic Ca2+ concentrations.
منابع مشابه
Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-independent.
Bovine aortic and cerebral microvascular endothelial cells and cultured segments of canine common carotid artery possess functional receptors for the nonapeptide bradykinin which mediate a rapid increase in the formation of [3H]inositol 1-phosphate, [3H]inositol 1,4-bisphosphate, and [3H]inositol 1,4,5-trisphosphate from cell membranes containing isotopically labeled myo-inositol. Bradykinin st...
متن کاملProperties of receptor-controlled inositol trisphosphate formation in parotid acinar cells.
Activation of muscarinic receptors in rat parotid cells results in breakdown of polyphosphoinositides liberating inositol phosphates, including inositol trisphosphate. Formation of inositol trisphosphate appears independent of agonist-induced Ca2+ mobilization, since neither formation nor degradation of inositol trisphosphate are appreciably altered in low-calcium media, and elevation of cytoso...
متن کاملSimulations of inositol phosphate metabolism and its interaction with InsP(3)-mediated calcium release.
Inositol phosphates function as second messengers for a variety of extracellular signals. Ins(1,4,5)P(3) generated by phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate, triggers numerous cellular processes by regulating calcium release from internal stores. The Ins(1,4,5)P(3) signal is coupled to a complex metabolic cascade involving a series of phosphatases and kinases. ...
متن کاملKinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. Relationship to calcium signalling.
Stimulation of rat parotid acinar cells by the muscarinic cholinergic receptor agonist methacholine results in the formation of inositol 1,4,5-trisphosphate [1,4,5)IP3) and inositol cyclic 1:2,4,5-trisphosphate [c1:2,4,5)IP3) which, after 40 min, accumulate to a ratio of 1:0.57. The turnover rates of these inositol trisphosphates have been determined in cholinergically stimulated rat parotid ce...
متن کاملNicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling*
Nicotinic acid adenine dinucleotide phosphate (NAADP)2 is a metabolite of NADP that was first identified as the most potent Ca2 stores mobilizing molecule in sea urchin egg homogenates more than a decade ago (1, 2). It has since been shown to be effective in a wide variety of cells, from plant to animal, including human (reviewed in Refs. 3–5). Its mechanism of action is distinct from those of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 84 شماره
صفحات -
تاریخ انتشار 1990